
owmeta-core Documentation
Release dev

Mark Watts

Jan 18, 2022

Contents

1 owmeta_core 3
1.1 owmeta_core package . 3

2 For Users 7
2.1 Making data objects . 7
2.2 Working with contexts . 8
2.3 owm Command Line . 9
2.4 Software Versioning . 10
2.5 Python Release Compatibility . 11
2.6 BitTorrent client for P2P filesharing . 11
2.7 Querying for data objects . 13

3 For Developers 15
3.1 Testing in owmeta-core . 15
3.2 Writing documentation . 16
3.3 owmeta-core coding standards . 17
3.4 Design documents . 17

4 Issues 23

5 Indices and tables 25

i

ii

owmeta-core Documentation, Release dev

Our main README is available online on Github.1 This documentation contains additional materials beyond what is
covered there.

Contents:

1 http://github.com/openworm/owmeta-core

Contents 1

http://github.com/openworm/owmeta-core

owmeta-core Documentation, Release dev

2 Contents

CHAPTER 1

owmeta_core

1.1 owmeta_core package

1.1.1 Subpackages

owmeta_core.bundle package

Subpackages

owmeta_core.bundle.loaders package

Submodules

owmeta_core.bundle.loaders.http module

owmeta_core.bundle.loaders.sftp module

Submodules

owmeta_core.bundle.archive module

owmeta_core.bundle.common module

owmeta_core.bundle.exceptions module

owmeta_core.commands package

Submodules

3

owmeta-core Documentation, Release dev

owmeta_core.commands.bundle module

owmeta_core.data_trans package

Submodules

owmeta_core.data_trans.common_data module

owmeta_core.data_trans.context_datasource module

owmeta_core.data_trans.csv_ds module

owmeta_core.data_trans.excel_ds module

owmeta_core.data_trans.file_ds module

owmeta_core.data_trans.http_ds module

owmeta_core.data_trans.local_file_ds module

1.1.2 Submodules

owmeta_core.agg_store module

owmeta_core.bittorrent module

owmeta_core.bundle_dependency_store module

owmeta_core.capabilities module

owmeta_core.capability module

owmeta_core.cli module

owmeta_core.cli_command_wrapper module

owmeta_core.cli_common module

owmeta_core.cli_hints module

owmeta_core.collections module

owmeta_core.command module

owmeta_core.command_util module

owmeta_core.configure module

owmeta_core.context module

4 Chapter 1. owmeta_core

owmeta-core Documentation, Release dev

owmeta_core.context_common module

owmeta_core.context_dataobject module

owmeta_core.context_mapped_class_util module

owmeta_core.context_store module

owmeta_core.contextualize module

owmeta_core.custom_dataobject_property module

owmeta_core.data module

owmeta_core.dataobject module

owmeta_core.dataobject_property module

owmeta_core.datasource module

owmeta_core.datasource_loader module

owmeta_core.docscrape module

owmeta_core.file_lock module

owmeta_core.file_match module

owmeta_core.file_utils module

owmeta_core.git_repo module

owmeta_core.graph_object module

owmeta_core.graph_serialization module

owmeta_core.identifier_mixin module

owmeta_core.inverse_property module

owmeta_core.mapped_class module

owmeta_core.mapper module

owmeta_core.property_mixins module

owmeta_core.property_value module

owmeta_core.quantity module

owmeta_core.ranged_objects module

1.1. owmeta_core package 5

owmeta-core Documentation, Release dev

owmeta_core.rdf_go_modifiers module

owmeta_core.rdf_query_util module

owmeta_core.rdf_type_resolver module

owmeta_core.rdf_utils module

owmeta_core.statement module

owmeta_core.text_util module

owmeta_core.utils module

owmeta_core.variable module

6 Chapter 1. owmeta_core

CHAPTER 2

For Users

2.1 Making data objects

To make a new object type like you just need to make a subclass of DataObject with the appropriate.

Say, for example, that I want to record some information about drug reactions in dogs. I make Drug, Experiment,
and Dog classes to describe drug reactions:

>>> from owmeta_core.dataobject import (DataObject,
... DatatypeProperty,
... ObjectProperty,
... Alias)
>>> from owmeta_core.context import Context
>>> from owmeta_core.mapper import Mapper

>>> module_context = 'http://example.com/animals'

>>> class Dog(DataObject):
... breed = DatatypeProperty()

>>> class Drug(DataObject):
... name = DatatypeProperty()
... drug_name = Alias(name)
... key_property = dict(property=name, type='direct')

>>> class Experiment(DataObject):
... drug = ObjectProperty(value_type=Drug)
... subject = ObjectProperty(value_type=Dog)
... route_of_entry = DatatypeProperty()
... reaction = DatatypeProperty()

Do some accounting stuff to register the classes. Usually happens behind
the scenes.
>>> m = Mapper()
>>> m.process_classes(Drug, Experiment, Dog)

7

owmeta-core Documentation, Release dev

So, we have created I can then make a Drug object for moon rocks and describe an experiment by Aperture Labs:

>>> ctx = Context('http://example.org/experiments', mapper=m)
>>> d = ctx(Drug)(name='moon rocks')
>>> e = ctx(Experiment)(key='experiment001')
>>> w = ctx(Dog)(breed='Affenpinscher')
>>> e.subject(w)
owmeta_core.statement.Statement(...Context(.../experiments"))

>>> e.drug(d)
owmeta_core.statement.Statement(...)

>>> e.route_of_entry('ingestion')
owmeta_core.statement.Statement(...)

>>> e.reaction('no reaction')
owmeta_core.statement.Statement(...)

and save those statements:

>>> ctx.save()

For simple objects, this is all we have to do.

You can also add properties to an object after it has been created by calling either ObjectProperty or DatatypeProperty
on the class:

>>> d = ctx(Drug)(name='moon rocks')
>>> Drug.DatatypeProperty('granularity', owner=d)
__main__.Drug_granularity(owner=Drug(ident=rdflib.term.URIRef('http://data.openworm.
→˓org/Drug#moon%20rocks')))

>>> d.granularity('ground up')
owmeta_core.statement.Statement(...Context(.../experiments"))

>>> do = Drug()

Properties added in this fashion will not propagate to any other objects:

>>> do.granularity
Traceback (most recent call last):

...
AttributeError: 'Drug' object has no attribute 'granularity'

They will, however, be saved along with the object they are attached to.

2.2 Working with contexts

2.2.1 Background

Contexts were introduced to owmeta-core as a generic tool for grouping statements. We need to group statements to
make statements about statements like “Who made these statements?” or “When were these statements made?”. That’s
the main usage. Beyond that, we need a way to share statements. Contexts have identifiers by which we can naturally
refer to contexts from other contexts.

8 Chapter 2. For Users

owmeta-core Documentation, Release dev

owmeta-core needs a way to represent contexts with the existing statement form. Other alternatives were considered,
such as using Python’s context managers, but I (Mark) also wanted a way to put statements in a context that could also
be carried with the subject of the statement. Using the wrapt package’s proxies allows to achieve this while keeping
the interface of the wrapped object the same, which is useful since it doesn’t require a user of the object to know
anything about contexts unless they need to change the context of a statement.

The remainder of this page will go into doing some useful things with contexts.

2.2.2 Classes and contexts

owmeta-core can load classes as well as instances from an RDF graph. The packages which define the classes must
already be installed in the Python library path, and a few statements need to be in the graph you are loading from or in
a graph imported (transitively) by that graph. The statements you need are these

:a_class_desc <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://openworm.org/
→˓entities/PythonClassDescription> .
:a_class_desc <http://openworm.org/entities/ClassDescription/module> :a_module .
:a_class_desc <http://openworm.org/entities/PythonClassDescription/name> "AClassName"
→˓.

:a_module <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://openworm.org/
→˓entities/PythonModule> .
:a_module <http://openworm.org/entities/PythonModule/name> "APackage.and.module.name"
→˓.

where :a_class_desc and :a_module are placeholders for objects which will typically be created by owmeta-
core on the user’s behalf, and AClassName is the name of the class available at the top-level of the module
APackage.and.module.name. These statements will be created in memory by owmeta-core when a module
defining a DataObject-derived class is first processed by a Mapper which will happen after the module is im-
ported.

2.3 owm Command Line

The owm command line provides a high-level interface for working with owmeta-core-managed data. The central
object which owm works on is the owmeta-core project, which contains the triple store – a set of files in a binary
format. The sub-commands act on important files inside the project or with entities in the database.

To get usage information:

owm --help

To clone a project:

owm clone $database_url

This will clone a project into .owm in your current working directory. After a successful clone, a binary database
usable as a owmeta store will have been created from the serialized graphs (i.e., sets of RDF (Resource Description
Framework) triples) in the project.

To save changes made to the database, run the commit sub-command like this:

owm commit -m "Adding records from January-March"

To recreate the database from serialized graphs, run the regendb sub-command:

2.3. owm Command Line 9

https://wrapt.readthedocs.io/en/latest/

owmeta-core Documentation, Release dev

owm regendb

Be careful with regendb as it will delete anything you have added to binary database beyond what’s in the serialized
graphs.

To make a new project:

owm init

This will create a project in .owm in your current working directory.

2.4 Software Versioning

The owmeta-core library follows the semanitc versioning scheme. For the sake of versioning, the software interface
consists of:

1. The owm command line interface

2. The underlying owmeta_core.command.OWM class underlying that CLI

3. All “public” definitions (i.e., those whose names do not begin with ‘_’) in the owmeta_core package, sub-
packages, and sub-modules

4. The format of RDF data generated by owmeta_core.dataobject.DataObject and the subclasses
thereof defined in the owmeta_core package, sub-packages, and sub-modules

5. The API documentation for the owmeta_core package, sub-packages, and sub-modules

In addition, any changes to the packages released on PyPI mandates at least a patch version increment.

For Git, our software version control system, software releases will be represented as tags in the form
v$semantic_version with all components of the semantic version represented.

2.4.1 Documentation versioning

The documentation will have a distinct version number from the software. The version numbers for the docu-
mentation must change at least as often as the software versioning since the relationship of the documentation
to the software necessarily changes. However, changes only to the non-API documentation will not be a cause
for a change to any of the components of the software version number. For documentation releases which coin-
cide with software releases, the documentation version number will simply be the software version number. Any
subsequent change to documentation between software releases will compel an increase in the documentation ver-
sion number by one. The documentation version number for such documentation releases will be represented as
${software_version}+docs${documentation_increment}.

2.4.2 Mapped Class Versioning

Versioning for mapped classes has special considerations related to how Python classes map to RDF types. RDF types
map to a specific class, module, and package version through the “class registry”. This class registry is contained
within a bundle and each bundle is free to have its own registry. The registry, moreover, can be replaced by another
registry by the user of the bundle.

We want data created with later versions of a mapped class to be compatible with earlier versions of that class so that
we can use pre-existing analysis and transformations (e.g., with a DataTranslator). This flexibility allows for
pre-existing processes to keep working without change even as the upstream moves on. On the other hand, newer

10 Chapter 2. For Users

https://semver.org

owmeta-core Documentation, Release dev

versions of a software package should still have access to the data created with older versions of the corresponding
Python classes so that users of that package are not forced to translate or abandon the old data.

The two-way compatibility described above is appropriate in the context of the “open world assumption”: the rela-
tionships an RDF type participates in are described by the Python class, but that description may be incomplete. We
may make the description of an RDF type more complete by adding properties to the Python class or constraining
existing properties. When we add properties, however, we should create a new Python class rather than modifying the
existing one: this allows for querying for data created with the earlier version of the Python class while also being
able to create instances of the new class. The new class should not, however, have the same RDF type as the old one
since the code for resolving types from the class registry only supports mapping to one Python type from any given
RDF type1. The recommended way to handle this is to include a version number in the URI for the RDF type and,
when making the new type, to increment the version number for the new URI. The new type should be declared as a
sub-class of the old type, and owmeta-core will add the appropriate sub-class relationships so that querying for the old
type will return instances of the new type as well. This split also means that while I use the new software package, I
can utilize the data generated with the old Python class without needing to have the old Python package because the
new package retains the old class.

2.4.3 Release Notes

Release notes are organized, generally into three sections. ‘Features and Enhancements’ are changes to the external
interface of owmeta-core where there wasn’t anything that fulfilled the use case previously (features) or where the
previous behavior was sub-optimal or just different (enhancements), but not wrong per se. The second section, ‘Fixes’,
contains corrections to previous behavior. The third section ‘Internal/Misc. Changes’ contains changes that either
don’t really change owmeta-core itself, like changes in to project metadata, documentation changes, or changes to
build automation. Other sections may be added, like ‘Known Issues’, which should be self-explanatory when used.

Notes:

2.5 Python Release Compatibility

All Python releases will be supported until they reach their official end-of-life, typically reported as “Release Schedule”
PEPs (search “release schedule” on the PEP index) Thereafter, any regressions due to dependencies of owmeta-core
dropping support for an EOL Python version, or due to a change in owmeta-core making use of a feature in a still-
supported Python release will only be fixed for the sake of OpenWorm projects when requested by an issue on our
tracker or for other projects when a compelling case can be made.

This policy is intended to provide support to most well-maintained projects which depend on owmeta-core while not
overburdening developers.

2.6 BitTorrent client for P2P filesharing

1. Download desired contents:

• A LocalFileDataSource created and stored within the local graph store contains a torrent_file_name
Informational. This refers to the torrent containing the location of the desired contents on the BitTorrent.
A torrent is used to locate files on the File System [BEP 3]. A DataSource defines attributes about the
contents that it represents.

1 One alternative to this is returning, for each RDF instance of a type, N Python instances for N Python classes in the registry mapped to the RDF
type.

2.5. Python Release Compatibility 11

https://en.wikipedia.org/wiki/Open-world_assumption
https://www.python.org/dev/peps/#id7
https://github.com/openworm/owmeta-core/issues
https://github.com/openworm/owmeta-core/issues
https://github.com/openworm/owmeta/pull/424/files#diff-f837dedc6cde6b8c62975ac3b9ed4efe
http://www.bittorrent.org/beps/bep_0003.html

owmeta-core Documentation, Release dev

Module t describes the DataSource attributes:

def owm_data(ns):
ns.context.add_import(ConnectomeCSVDataSource.definition_context)
ns.context(ConnectomeCSVDataSource)(
key = '2000_connections',
csv_file_name = 'connectome.csv',
torrent_file_name = 'd9da5ce947c6f1c127dfcdc2ede63320.torrent'

)

The DataSource can be created and stored on the local graph with:

$ owm save t

The DataSource identifier can be used to see contents stored in the local graph with:

$ owm source show ConnectomeCSVDataSource:2000_connections

ConnectomeCSVDataSource CSV file name: ‘connectome.csv’

File name: ‘connectome.csv’

Torrent file name: ‘d9da5ce947c6f1c127dfcdc2ede63320.torrent’

• The BitTorrentDataSourceDirLoader class inherits from the DataSourceDirLoader and overrides its load
() method. Google Drive stores the torrents uploaded by other researchers. load() fetches the torrent
refered to in torrent_file_name of the DataSource, performs DataTranslator from one form to
another and then adds the torrent to the BitTorrent Client for downloading its contents.

This BitTorrent Client is available on PyPI and is included in the owmeta_core setup.

To install separately:

$ pip install torrent-client

For reference, use the torrent-client repository and its usage information with:

$ torrent_cli.py -h

12 Chapter 2. For Users

https://github.com/openworm/owmeta/pull/449/files
https://en.wikipedia.org/wiki/Google_Drive
https://github.com/openworm/bt-gsoc-2019
https://pypi.org/project/torrent-client/
https://github.com/openworm/owmeta_core/blob/dev/setup.py
https://github.com/jaideep-seth/Torrent_client_gsoc19

owmeta-core Documentation, Release dev

The DataSourceDirLoader attribute - base_directory, which is set in the
BitTorrentDataSourceDirLoader constructor is where both the torrent and its contents are
downloaded:

content = BitTorrentDataSourceDirLoader("./")

• Within the .owm directory we have the credentials.json and token.pickle these are for authentication of the
Google Drive. For the purpose of access control the client_secret required by credentials.json
will only be shared by owmeta maintainers.

• The torrent file name is the MD5 message digest of its contents. If the hash of the downloaded contents is
the same as its torrent name the data is unaltered.

Data-Integrity is to be checked after 100% download completion:

$ python3 integrity.py 'd9da5ce947c6f1c127dfcdc2ede63320.torrent' 'Merged_
→˓Nuclei_Stained_Worm.zip'

2. Upload your contents:

• On an AWS EC2 instance is running a Nginx WSGI and a Flask Server to accept .zip content file uploads.
Visit this Elastic IP address [13.235.204.78] to upload your files by browsing through your filesystem and then
clicking the Submit Query button.

• This will create a torrent and seed your contents in parts, to other peers on the BitTorrent network. Content
can then be downloaded as described above.

2.7 Querying for data objects

2.7.1 DataObject query form

Sub-classes of DataObject have a query attribute that provides a modified form of the class which is fit for
creating instances used in queries. The query form may do other things later, but, principally, it overrides identifier
generation based on attributes (see IdMixin).

For example, to query for a Neuron object with the name “AVAL” you would instantiate the Neuron like this:

>>> Neuron.query(name='AVAL')

Although it is possible to include instances without the query form, it is generally preferred to the basic form since
later versions of a class may change how they generate identifiers while keeping property URIs and RDF types the
same (or declaring new ones as sub-properties or sub-classes). Use of the query form is also recommended when a
class generates identifiers based on some number of properties, but a subclass doesn’t use the superclass identifier
scheme (Cell and Neuron are an example). The query form allows to query for instances of the superclass for
subclass instances.

2.7. Querying for data objects 13

https://github.com/openworm/owmeta_core/blob/dev/docs/command.rst
https://github.com/openworm/OpenWormData/pull/4
https://en.wikipedia.org/wiki/MD5

owmeta-core Documentation, Release dev

14 Chapter 2. For Users

CHAPTER 3

For Developers

3.1 Testing in owmeta-core

3.1.1 Preparing for tests

owmeta_core should be installed like:

pip install -e .

3.1.2 Running tests

Tests should be run via setup.py like:

python setup.py test

you can pass options to pytest like so:

python setup.py test --addopts '-k CommandTest'

3.1.3 Writing tests

Tests are written using Python’s unittest. In general, a collection of closely related tests should be in one file. For
selecting different classes of tests, tests can also be tagged using pytest marks like:

@pytest.mark.tag
class TestClass(unittest.TestCase):

...

Currently, marks are used to distinguish between unit-level tests and others which have the inttest mark

15

owmeta-core Documentation, Release dev

3.1.4 Deselecting tests

Tests can be deselected by adding a pytest “marker” to the test function, class, or module and then adding -m 'not
<your_marker>' to the pytest command line. Marking tests to be explicitly deselected is preferred to skipping
tests since skipped tests tend to break silently, especially with conditional skips such as with with pytest.mark.
skipif. A set of markers is, however, deselected by default in the addopts line in our pytest.ini file. Dese-
lected marks are added on a case-by-case basis and will always run on CI.

3.2 Writing documentation

Documentation for owmeta-core is housed in two locations:

1. In the top-level project directory as INSTALL.md and README.md.

2. As a Sphinx project under the docs directory

By way of example, to add a page about useful facts concerning C. elegans to the documentation, include an entry in
the list under toctree in docs/index.rst like:

worm-facts

and create the file worm-facts.rst under the docs directory and add a line:

.. _worm-facts:

to the top of your file, remembering to leave an empty line before adding all of your wonderful worm facts.

You can get a preview of what your documentation will look like when it is published by running sphinx-build
on the docs directory. To get the sphinx-build command, install the documentation requirements with:

pip install -r doc-requirements.txt

Then, you can run sphinx-build like this:

sphinx-build -w sphinx-errors docs <build_destination>

You can also invoke the command with default arguments (i.e., with output to build/sphinx using setup.py:

python setup.py build_sphinx

The docs will be compiled to html which you can view by pointing your web browser at <build_destination>/
index.html. The documentation will be rendered using the same theme as is used on the readthedocs.org site.

3.2.1 API Documentation

API documentation is generated by the Sphinx autodoc and apidoc extensions. The numpydoc format should be easy
to pick up on, but a reference is available here. Just add a docstring to your function/class/method and your class should
appear among the other documented classes. Note, however, that “special” methods like __call__ will not show up
by default – if they need to be documented for a given class, add a declaration like this to the class documentation:

class SpecialMethodDocExample:
'''
Example class doc

.. automethod:: __call__

(continues on next page)

16 Chapter 3. For Developers

https://docs.pytest.org/en/latest/mark.html
http://sphinx-doc.org/
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://github.com/sphinx-contrib/apidoc
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

owmeta-core Documentation, Release dev

(continued from previous page)

'''

def __call__(self):
'''
Hey, I'm in the API documentation!
'''

3.2.2 Substitutions

Project-wide substitutions can be (conservatively!) added to allow for easily changing a value over all of the doc-
umentation. Currently defined substitutions can be found in conf.py in the rst_epilog setting. More about
substitutions

3.2.3 Conventions

If you’d like to add a convention, list it here and start using it. It can be reviewed as part of a pull request.

1. Narrative text should be wrapped at 80 characters.

2. Long links should be extracted from narrative text. Use your judgement on what ‘long’ is, but if it causes the
line width to stray beyond 80 characters that’s a good indication.

3.3 owmeta-core coding standards

Pull requests are required to follow the PEP-8 Guidelines for contributions of Python code to owmeta-core, with some
exceptions noted below. Compliance can be checked with the pep8 tool and these command line arguments:

--max-line-length=120 --ignore=E261,E266,E265,E402,E121,E123,E126,E226,E24,E704,E128

Refer to the pep8 documentation for the meanings of these error codes.

Lines of code should only be wrapped before 120 chars for readability. Comments and string literals, including
docstrings, can be wrapped to a shorter length.

Some violations can be corrected with autopep8.

3.4 Design documents

These comprise the core design artifacts for owmeta.

3.4.1 Project Bundles

A project bundle is composed of:

• a universally unique identifier,

• a version number,

• a collection of contexts,

3.3. owmeta-core coding standards 17

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://pep8.readthedocs.io/en/release-1.7.x/intro.html#error-codes

owmeta-core Documentation, Release dev

• a distinguished “imports” context describing relationships between contexts, both those in the bundle, and be-
tween contexts in the bundle and in dependencies,

plus several optional components:

• a human-friendly name,

• a description of the bundle’s contents,

• a collection of files,

• a listing of dependencies on other bundles,

• a set of mappings between project-scoped identifiers and universal context identifiers.

They solve the problem of contexts containing different statements having the same identifier for different purposes.

There are several ways we can get different contexts with the same identifier:

• through revisions of a context over time,

• by distinct groups using the same context identifier,

• or by contexts being distributed with different variants (e.g., a full and an abridged version).

In solving this problem of context ID aliasing, bundles also helps solve the problem of having contexts with incon-
sistent statements in the same project by providing a division within a project, between groups of contexts that aren’t
necessarily related.

Dependencies

A bundle can declare other bundles upon which it depends, by listing those other bundles identifiers and version
numbers. In addition, a bundle can declare contexts and files within the dependency that should be included or
excluded. More interestingly, a dependency specification may declare that contexts declared within the dependency be
renamed according to a number of rewrite rules. This is to allow for using bundles with conflicting Context Identifiers.

Certain problems come up when dealing with contexts across different bundles. This rewriting allows to keep separate
the contexts in one bundle from another and to prevent contexts with the same ID from conflicting with one another
just because they’re brought in by a transitive dependency.

An example

This example describes a likely naming conflict that can arise in context naming between bundles.

Bundles 𝛼, 𝛽, and 𝛾. With dependencies like so:

𝛼 -> 𝛽 -> 𝛾

where both 𝛼 and 𝛾 contain a context with ID c. The dependency resolution system will find the c context in 𝛾 and if
there is no remapping that removes the conflict, either in 𝛽 or in 𝛼, then the system will deliver a message indicating
that the context needs to be deconflicted and in which bundle each of the conflicting declarations is. At this point, the
maintainer of the 𝛼 package can make the change to omit c from 𝛾, omit it from 𝛼, rename c in 𝛾, or rename it in 𝛼.
One special case, where 𝛼’s c and 𝛾’s c are identical, permits an automatic resolution; nonetheless, the system emits
a warning in this case, with the option to fail similarly to the case where the contexts are distinct.

Core bundles

The “core” bundle contains (or depends on) metadata of all of the core classes in owmeta which are needed to make
owmeta features work. The core bundle is generated automatically for whichever version of owmeta is in use and a

18 Chapter 3. For Developers

owmeta-core Documentation, Release dev

reference to it is added automatically when a bundle is installed. A given bundle may, however, explicitly use a specific
version of the core bundle.

Relationships

Where not specified, the subject of a relationship can participate in the relationship exactly once. For example, “A
Dog has a Human”, means “A Dog has one and only one Human”.

• A Project can have zero or more Bundles

• A Bundle can belong to only one Project

• A Context Identifier is associated with one or more Content-Based Identifiers

• A Content-Based Identifier has a Hash

• A Content-Based Identifier has an RDF Serialization Format

• A Hash can appear in zero or more Content-Based Identifiers

• A Hash has an Algorithm ID and a Message Digest

Types

Below is a description in terms of lower-level types of some higher-level types referenced above.

• A Message Digest is a Base-64 encoding of a string of bytes

• An Algorithm ID is a string that identifies an algorithm. Valid strings will be determined by any applications
reading or writing the hashes, but in general will come from the set of constructors of Python’s hashlib
module.

• An RDF Serialization Format is a string naming the format of a canonical RDF graph serialization. Supported
format strings:

“nt” N-Triples

3.4.2 Project Distribution

Projects are distributed as bundle archives, also referred to as dists (short for distributions) in the documentation
and commands. The layout of files in a dist is largely the same as the format of a .owm directory on initial clone. In
other words the bundle contains a set of serialized graphs, an index of those graphs, an optional set of non-RDF data
that accompanies data sources stored amongst the graphs, and a configuration file which serves as a working owmeta
configuration file and a place for metadata about the bundle. The archive file format can be allowed to vary, between
producers and consumers of dists, but at least the tar.gz format should be supported by general-purpose clients.

3.4.3 Data Packaging Lifecycle

The package lifecycle encompasses the creation of data, packaging of said data, and uploading to shared resources.
The data packaging lifecycle draws from the Maven build lifecycle in the separation of local actions (e.g., compile,
stage, install phases) from remote interactions (the deploy phase). To explain why we have these distinct
phases, we should step back and look at what needs to happen when we share data.

In owmeta-core, we may be changing remote resources outside of the owmeta-core system. We also want to support
local use and staging of data because it is expected that there is a lengthy period of data collection/generation, analysis,
curation, and editing which precedes the publication of any data set. Having separate phases allows us to support a
wider range of use-cases with owmeta-core in this local “staging” period.

3.4. Design documents 19

https://docs.python.org/3/library/hashlib.html#module-hashlib
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Packaging

owmeta-core Documentation, Release dev

To make the above more concrete, the prototypical example for us is around LocalFileDataSource, which wants
to make the files described in the data source available for download. Typically, the local path to the file isn’t useful
outside of the machine. Also, except for files only a few tens of bytes in size, it isn’t feasible to store the file contents
in the same database as the metadata. We, still want to support metadata about these files and to avoid the necessity of
making n different DataSource sub-classes for n different ways of getting a file. What we do is define a “deploy”
phase that takes every LocalFileDataSource and “deploys” the files by uploading them to one or more remote
stores or, in the case of a peer-to-peer solution, by publishing information about the file to a tracker or distributed hash
table.

Packaging proceeds in phases to serve as an organizational structure for data producers, software developers, manage-
ment, and information technology personnel. Compared with a more free-form build strategy like using an amalgam
of shell scripts and disconnected commands, or even rule-based execution (e.g., GNU make), phases organize the
otherwise implicit process by which the local database gets made available to other people. This explicitness is very
useful since, when different people can take different roles in creating the configuration for each phase, having named
phases where things happen aids in discussion, process development, and review. For instance, junior lab technicians
may be responsible for creating or maintaining packaging with guidance from senior technicians or principal inves-
tigators. IT personnel may be interested in all phases since they all deal with the computing resources they manage,
but they may focus on the phases that affect “remote” resources since those resources may, in fact, be managed within
the same organization and require additional effort on the back-end to prepare those remote resources (e.g., generating
access credentials).

The remainder of this document will describe the default lifecycle and what takes place within each phase.

Default Lifecycle

The default lifecycle takes a bundle, including the contents of a owmeta-core triple store, creates one or more packages
from that, stages the packages for ongoing development, and, finally, deploys packages to shared resources so that
colleagues and other interested parties can access them. Each phase is associated with a sub-command in owm.

Install

Preparation for distribution.

When we’re generating data, our workspace is not necessarily in the right state for distribution. We may have created
temporary files and notes to ourselves, or we may have generated data in trial runs, intentionally or mistakenly, which
do not reflect our formal experimental conditions. In the install phase, we bring together just the data which we wish
to distribute for a given bundle and place it in the local bundle cache. This includes gathering hashes for files that
belong to the bundle and serializing named graphs. Once these data are installed, they should be immutable – in other
words, they should not change any more. Consequently, the install phase is the appropriate time for creating summary
statistics, signatures, and content-based identifiers.

Much of the data which is created in a research lab is append-only: observations are logged and timestamped either
by a human or by a machine in the moment they happen, and, if recorded properly, such logs are rarely edited, or,
if there is an amendment, it also is logged as such, with the original record preserved. As long as this append-only
property is preserved, we only need to designate the range of such time-stamped records which belong in a bundle to
have the desired immutability for a locally installed bundle without requiring a file copy operation. Of course, if the
source data is expected to be changed, then we would want either a copy-on-write mechanism (at the file system level)
or to copy the files. Regardless, file hashes and/or signatures created during the install phase would be available for
guarding against accidental changes.

owmeta-core will create a local repository to house installed packages. The repository stores the relationship between
the human-friendly name for the package (serving a purpose similar to Maven’s group-artifact-version coordinates)
and the set of serialized RDF graphs in the package. Given that the repository is meant to serve a user across projects,

20 Chapter 3. For Developers

https://www.gnu.org/software/make/manual/html_node/index.html

owmeta-core Documentation, Release dev

the repository will be stored in the “user directory”, if one can be found on the system.1

Deploy

Creation of configuration for upload/download. Sharing packages.

In the “deploy” phase, we publish our data to “remotes”. A “remote” may be a repository or, in the case of a peer-to-
peer file sharing system, a file index or DHT. Above, we referred to non-RDF data files on the local file system – during
the deploy phase, these files are actually published and accession information (e.g., a database record identifier) for
those files is generated and returned to the system where the deployment was initiated. This assumes a fully automated
process for publication of files: If, instead, the publication platform requires some manual interaction, that must be
done outside of owmeta-core and then the accession information would be provided with the deploy command.

3.4.4 Publishing DataSources

DataSource is a subclass of DataObject with a few features to make describing data files (CSV, HDF5, Excel)
a bit more consistent and to make recovering those files, and information about them, more reliable. In order to
have that reliability we have to take some extra measures when publishing a DataSource. In particular, we must
publish local files referred to by the DataSource and relativize those references. This file publication happens in the
“deploy” phase of the data packaging lifecycle. Before that, however, a description of what files need to be published
is generated in the “stage” phase. In the “stage” phase, the DataSources with files needing publication are queried
for in the configured triple store, and the “staging manager”, the component responsible for coordinating the “stage”
phase identifies file references that refer to the same files and directories.

1 This will be the user directory as determined by os.path.expanduser()

3.4. Design documents 21

https://docs.python.org/3/library/os.path.html#os.path.expanduser

owmeta-core Documentation, Release dev

22 Chapter 3. For Developers

CHAPTER 4

Issues

23

owmeta-core Documentation, Release dev

24 Chapter 4. Issues

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

25

	owmeta_core
	owmeta_core package

	For Users
	Making data objects
	Working with contexts
	owm Command Line
	Software Versioning
	Python Release Compatibility
	BitTorrent client for P2P filesharing
	Querying for data objects

	For Developers
	Testing in owmeta-core
	Writing documentation
	owmeta-core coding standards
	Design documents

	Issues
	Indices and tables

